Chemistry 1 Chemistry and the Environment Fall 2000

Amy Shachter, Ph.D. Department of Chemistry, Santa Clara University Office: Arts and Sciences, Ramos Center Phone: 551-7041 email: ashachter@scu.edu Office Hours: M 5:00-6:00 p.m.

Prerequisite: An interest in understanding environmental issues.

Objectives: Upon completion of the course, each student should have an understanding of global and local environmental problems, as well as ways of alleviating such problems.

Textbook: Reading assignments will be mainly from *Environmental Chemistry* by Colin Baird (2nd edition, W.H. Freeman and Company: New York; 2000). Additional materials will be provided as handouts or as web-based assignments.

General Procedures: Lecture will be on Tuesdays and Thursdays from 8:00 a.m. to 9:45 a.m. There will be one midterm examination and one comprehensive final exam. Absence from an exam without sufficient reason will result in a zero. If you have a valid reason for your absence, see me and bring with you reasonable proof of your circumstances (note from your doctor if ill). Make up exams will not be given.

Problems related to basic chemistry topics and readings will be assigned and graded. Course grades will be based on two exams (one midterm and a final), environmental assessment project (lab), problem sets and participation (attendance in class, project contribution, etc.).

Grading:

Participation Problem Sets Midterm Final Exam	50 100 150 150
Project	250
Total	700 points

Project: *Chemistry 1* is scheduled with an evening lab Wednesdays from 5:30 – 8:20 p.m. and is linked to Political Science 50 (World Geography) as part of a learning community. The Laboratory Component will allow for an expansion of environmental resource assessment (ERA) projects that have been a part of the course for several years. Since *Chemistry 1* will be linked with a World Geography course, the scientific aspects of environmental problems around the world will be discussed. Poor water quality and access to potable water are a global environmental theme for the course. Consequently, projects this Fall will focus primarily on water analysis (projected sources: reclaimed, SCU well, bottled, residence hall, local Superfund sites, Guadalupe River and Lexington Reservoir). The following methods of testing are available: field water testing kits, atomic absorption spectroscopy, and fluorescence methods (typically for biological contamination).

The project will involve a proposal, three written reports and a final poster presentation. The proposal should be a 1-2 page description of the project including objectives and relationship to previous campus assessment studies if appropriate. The preliminary report should describe what you intend to do, a timetable for your project and any preliminary findings you may have. A record of all your project activities should be maintained in a notebook or journal. The progress report should be an update on your project and will include background information related to your topic, description of methods if appropriate and initial findings. The final report will include the necessary background information, data and information, and recommendations (with justification!). Details related to poster preparation will be provided later.

Proposal (1-2 pages) Preliminary Report (2-5 pages) Progress Report (2-5 pages) Written Report (10-15 pages) <u>Poster Presentation</u> 20 points (group) 30 points (individual) 50 (individual) 100 (group) <u>50 (group)</u>

Total Project

250 points

Project Learning Outcomes: As you work on a project, you will be participating in a scientific research endeavor: identifying a problem, collecting preliminary information (previous ERA work, literature or other sources, observations), developing hypotheses, proposing, designing and conducting experiments, analyzing data and developing a list of recommendations for SCU based on the results of their work. You will be asked, based on your hypotheses, to use field test kits and one of the more sophisticated spectroscopic methods. You will be asked to compare the data and results obtained using the two methods (evaluate evidence and tolerate ambiguity). Furthermore, you will have to provide recommendations for the campus and local community based on your work. For example:

do not use the well water because

we tested for X and Y (they will have decide to test for X and Y based on their hypothesis and considering what is available/feasible- real world issues...) and found no contamination (detection limits?) but we did not test for Z therefore we can not definitively state the water is safe to use

the water is safe for what purpose ... to drink, to water grass...what is safe?

Chemistry and the Environment: Summary of Important Dates:			
Se Oc No No No No No No	t. 4 pt. 28 t. 13 t. 26 v. 2 v. 16 v. 17 v. 20-24 v. 28 v. 30 c. 7	Student Planning Day (no lab) Project Proposal Last Day to withdraw without a W Preliminary Project Report Midterm Project Progress Report Last Day to withdraw from a class Thanksgiving Project Written Reports Due Poster Presentation of Projects; Last Day of Class Final Exam; 1:30 p.m.	
Chemistry 1 Outline:			
Week Sept. 18 Sept. 25	Periodic Tab Basic Atomi Quantum M Atomic Num Atoms, Mole Chemical Ec		
Oct. 2	Chemistry of Natural Waters (Chapter 8) Oxidation and Reduction Acid-Base Chemistry Acids and bases pH scale		
Oct. 9 Oct. 16	Purification of Polluted Photochemical Smog Smog "road Brown cloud Acid Rain (C	(Chapter 3) map" d and tropospheric ozone	
Oct. 23	Global Warming (Chap Greenhouse Greenhouse Absorption o Feedback m	pter 4) e effect e gases of IR radiation nechanisms	
Oct. 30	Basics of ele Coal and ac Gasoline an Photovoltaic	Solar Energy (Chapter 5) ectrical production id rain, smog, and global warming id photochemical smog and global warming	
Nov. 6	Nuclear Energy (Chap Types of nu	oter 5) clear decay RADs and REMs	
Nov. 13	Ozone Depletion (Cha Types of ele Ozone layer CFCs	ectromagnetic radiation	
Nov. 27	Hazardous Waste (Ch Recycling Household H		